Friday, August 6, 2010

Transcendence of e and π


The transcendence of e and π are direct corollaries of this theorem.
Suppose α is a nonzero algebraic number; then {α} is a linearly independent set over the rationals, and therefore by the first formulation of the theorem {eα} is an algebraically independent set; or in other words eα is transcendental. In particular, e1 = e is transcendental. (A more elementary proof that e is transcendental is outlined in the article on transcendental numbers.)
Alternatively, using the second formulation of the theorem, we can argue that if α is a nonzero algebraic number, then {0, α} is a set of distinct algebraic numbers, and so the set {e0eα} = {1, eα} is linearly independent over the algebraic numbers and in particular eα cannot be algebraic and so it is transcendental.